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Abstract

We deal with the generalized Emden–Fowler equation 𝑓 ′′(𝑥) + 𝑔(𝑥)𝑓−𝜃(𝑥) = 0,
where 𝜃 ∈ R, 𝑥 ∈ (𝑎, 𝑏), 𝑔 belongs to 𝐿𝑝((𝑎, 𝑏)). We obtain a priori estimates
for the solutions, as well as information about their asymptotic behavior near
boundary points. As a tool we derive new nonlinear variants of first and second
order Poincaré inequalities, which are based on strongly nonlinear multiplicative
inequalities obtained recently in [11].
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1 Introduction

In this paper we deal with the generalized Emden�Fowler equation

𝑓 ′′(𝑥) + 𝑔(𝑥)𝑓−𝜃(𝑥) = 0, where 𝜃 ∈ R, 𝑥 ∈ (𝑎, 𝑏), (1.1)

which appears in many branches of mathematical physics.

For 𝛾 := −𝜃 > 0 the equation is known as the generalized Emden�Fowler equation
with positive exponent and is of great interest in literature. It appears in the study

*The work of both authors is supported by the Polish Ministry of Science grant no. N N201 397837
(years 2009-2012).
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of gas dynamics, �uid mechanics, relativistic mechanics, nuclear physics and in study
of chemically reacting systems. In particular the equation 𝑦

′′
(𝑡) = 𝑡

1
2𝑦(𝑡)

3
2 found inde-

pendently by Thomas [24] and Fermi [8] describes the electrical potential in an isolated
neutral atom. For a detailed account of historical developments, particular applications
of this equation we refer to the survey paper of Wong [27, Section 2].

For 𝛾 := −𝜃 < 0 the equation is called the generalized Emden�Fowler equation with
negative exponent. It also arises in many branches of applied mathematics. For example
it appears in �uid dynamics to investigate problems in non-Newtonian �uid �ow [14] or
to describe the �ow over an impermeable plate [18]. Equations of this type are found
in permeable catalysis [22], are used to describe glacial advance [26] or the transport of
coal slurries down conveyor belts [7].

Let us mention the following two problems that arises in the study of Emden�Fowler
equations:

A) the existence and uniqueness of solutions;

B) the regularity and qualitative properties of solutions, involving questions about
their asymptotic behavior and a priori estimates.

We brie�y discuss some selected results considering cases A) and B) separately.

A) The existence and uniqueness. In literature authors usually consider clas-
sical solutions to (1.1), i.e. solutions in the class 𝐶([0, 1]) ∩ 𝐶2((0, 1)), under various
boundary conditions and assumption that 𝑔 ∈ 𝐶((𝑎, 𝑏)), 𝑔 > 0. For example Nachman
and Callegari [18] proved for 𝑔(𝑥) = 𝑥 and 𝜃 = 1 the existence, uniqueness and analytic-
ity of positive solutions with vanishing Dirichlet boundary conditions. A necessary and
su�cient condition on 𝑔 for the existence of solutions to (1.1) with 𝜃 > 0 was given by
Taliaferro [23], who also proved that such solutions are unique. For a deeper discussion
see [21] and for results regarding more general equations see [2, 9, 10, 20].
A necessary and su�cient condition, obtained in [23] for the existence of classical solu-

tions in case when 𝑔 is continuous and positive on (𝑎, 𝑏), reads as:
∫︀ 𝑏

𝑎
𝑡(1− 𝑡)𝑔(𝑡)𝑑𝑡 <∞.

It allows function 𝑔 to be unbounded as 𝑥 → 𝑎+ or 𝑥 → 𝑏−. It seems natural to ask
whether function 𝑔 may blow-up or vanish in the interior points of the domain as well.
To the best of our knowledge there are no results in this direction. On the other hand
it is not di�cult to �nd an equation of the form (1.1) and dealing with an irregular
function 𝑔. For example the equation is satis�ed (in the sense of De�nition 6.1) with

𝑔(𝑥) = 𝛼(𝛼 − 1)𝑥𝛼−2+𝛼𝜃𝜒𝑥>0, 𝑓(𝑥) = 𝑥𝛼𝜒𝑥>0, when 𝛼 ∈ (0, 1) and 𝜃 < −1 + 1
𝛼

(︁
2 − 1

𝑝

)︁
(see Example 6.1 for details).

B) The regularity and qualitative properties of solutions. Some au-
thors deal with the qualitative properties of solutions to (1.1). We only discuss results
involving 𝑔 ∈ 𝐶((𝑎, 𝑏)) as we did not �nd any other ones. In this case solutions are
classical, so their regularity is 𝐶([𝑎, 𝑏]) ∩ 𝐶2((𝑎, 𝑏)). The authors often ask about the
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oscillatory properties of solutions (see e.g. [28]) or their asymptotic behavior ([19, 23]).
Naito in [19] considered the case (𝑎, 𝑏) = (0,∞) and obtained the conditions on admit-
ted continuous functions 𝑔 such that the solutions to (1.1) behave like nontrivial a�ne
functions 𝑐1𝑥 + 𝑐2 as 𝑥 → ∞. The study of asymptotic behavior of solutions to (1.1)
in case 𝜃 > 0, 𝑔 continuous and (𝑎, 𝑏) = (0, 1) (in particular (𝑎, 𝑏) is bounded), was
provided in [23]. Some other related results can be found in [5, 25, 29].
It is natural to ask what can be said about the asymptotic behavior of the solutions in
case when 𝑔 is less regular than continuous. This question is also of our interest.

Our goal is to present an e�ective tool to study weak solutions to (1.1) in case when
𝑔 ∈ 𝐿𝑝((𝑎, 𝑏)), 𝑝 ≥ 2, 𝜃 ∈ R, 𝑓 is nonnegative and not necessarily strictly positive. We
achieve it in several approaches, which are described below.

∙ When dealing with (1.1) we have to introduce a new definition of solutions. The
di�culty there is that when 𝑔 is irregular the solution may be irregular as well.
By our general assumptions 𝑓 is continuous but it may not belong to Sobolev
space 𝑊 1,1

𝑙𝑜𝑐 ((𝑎, 𝑏)) (see Theorem 6.1). In particular 𝑓 ′′ is de�ned in distributional
sense on whole interval (𝑎, 𝑏), but when 𝜃 is positive function 𝑔𝑓−𝜃 is de�ned only
when 𝑓 is nonzero. This is why we have to introduce a new de�nition of solutions
when 𝜃 > 0 and 𝑓 may admit zeroes inside (𝑎, 𝑏) (De�nition 6.1). Under our
assumptions, in general, the strong maximum principle does not apply to such
solutions (cf. Example 6.1) and indeed the solutions may admit zeroes in (𝑎, 𝑏).
Moreover, our class of admitted functions is essentially larger than the class in
[11], where the authors assumed that 𝑓 ∈ 𝑊 2,1

𝑙𝑜𝑐 ((𝑎, 𝑏)).

∙ As a main result we obtain the following a priori estimates for solutions (cf. The-
orem 6.1): ∫︁

{𝑓>0}
(𝑓(𝑥))𝑝(𝑓(𝑥))𝜃𝑝𝑑𝑥 ≤ 𝐶

∫︁
{𝑓>0}

|𝑔(𝑥)|𝑝𝑑𝑥, (1.2)∫︁
{𝑓>0}

|𝑓 ′(𝑥)|𝑝(𝑓(𝑥))𝜃𝑝𝑑𝑥 ≤ 𝐶

∫︁
{𝑓>0}

|𝑔(𝑥)|𝑝𝑑𝑥. (1.3)

∙ The estimates are based on first and second order strongly nonlinear Poincaré
inequalities derived here which seem to be new (Theorems 4.1 and 5.1):∫︁

{𝑓>0}
(𝑓(𝑥))𝑝(𝑓(𝑥))𝜃𝑝𝑑𝑥 ≤𝐶

∫︁
{𝑓>0}

|𝑓 ′(𝑥)|𝑝 (𝑓(𝑥))𝜃𝑝𝑑𝑥 and∫︁
{𝑓>0}

(𝑓(𝑥))𝑝(𝑓(𝑥))𝜃𝑝𝑑𝑥 ≤𝐶
∫︁
{𝑓>0}

|𝑓 ′′(𝑥)|𝑝(𝑓(𝑥))𝜃𝑝𝑑𝑥,∫︁
{𝑓>0}

|𝑓 ′(𝑥)|𝑝(𝑓(𝑥))𝜃𝑝𝑑𝑥 ≤𝐶
∫︁
{𝑓>0}

|𝑓 ′′(𝑥)|𝑝(𝑓(𝑥))𝜃𝑝𝑑𝑥.

(1.4)
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∙ The second order Poincaré type inequalities are obtained as a consequence of a
modi�cation of the following strongly nonlinear multiplicative inequality obtained
recently in [11] (cf. Theorem 3.1):∫︁

{𝑓>0}
|𝑓(𝑥)′|𝑝(𝑓(𝑥))𝜃𝑝𝑑𝑥 ≤

(︂
𝑝− 1

|1 + 𝜃𝑝|

)︂ 𝑝
2
∫︁
{𝑓>0}

(
√︀
|𝑓(𝑥)𝑓 ′′(𝑥)|)𝑝(𝑓(𝑥))𝜃𝑝𝑑𝑥.

(1.5)

∙ As an example of application of our regularity results (1.2) and (1.3) we deduce
asymptotic behavior of solutions to (1.1) near the boundary point 𝑎, generalizing
some of the earlier estimates from [11] (cf. Theorem 6.1). Contrary to the similar
estimates contributing to the study of the asymptotic behavior proven in [11],
we do not assume here that the solutions to (1.1) are strictly positive nor that
𝑓 ∈ 𝑊 2,1

𝑙𝑜𝑐 ((𝑎, 𝑏)). For example we deduce that when 𝑓(0) = 𝑓(1) = 0 and 𝜃 > −1,
we have

0 ≤ 𝑓(𝑥) ≤ 𝐶𝑥
𝑝−1

𝑝(1+𝜃)

(︂∫︁ 𝑏

𝑎

|𝑔(𝑥)|𝑝𝑑𝑥
)︂ 1

𝑝(1+𝜃)

as 𝑥→ 0. In particular when −1 < 𝜃 < −1
𝑝
the convergence to zero is faster than

linear. See Remark 7.5 for details. As we link our estimates with 𝐿𝑝 norm of 𝑔,
our results cannot be compared directly with [5, 23, 25, 29].

As a partial result we obtain that a solution to (1.1) is of the form ℎ(𝑥)
1

1+𝜃 , where ℎ ∈
𝑊 1,𝑝((𝑎, 𝑏)), see Theorem 6.1. This suggests that perhaps when dealing with singular
ODEs it is natural to expect that solutions are rather compositions of Sobolev functions
than Sobolev functions itself. This is also why we required di�erent than usual de�nition
of solutions. So far the problem of characterizing the set 𝑋 satisfying the condition:
𝑓 ∈ 𝑋 ⇔ 𝑇 (𝑓) ∈ 𝑊 𝑘,𝑝, where 𝑇 is the given mapping, is not well understood, see [3, 6]
for the related results.

2 Preliminaries and notation

Notation. If 𝐼 ⊆ R is an open subset, we use the standard notation: 𝐶∞
0 (I) to denote

smooth compactly supported functions, 𝑊𝑚,𝑝(I) and 𝑊𝑚,𝑝
𝑙𝑜𝑐 (I) to denote the spaces of

global and local Sobolev functions de�ned on 𝐼, respectively. If 𝐴 ⊆ R and 𝑓 is de�ned
on 𝐴 we denote by 𝑓𝜒𝐴 the extension of 𝑓 by zero outside set 𝐴. We write 𝐵(𝑥, 𝑦) :=∫︀ 1

0
𝑡𝑥−1(1 − 𝑡)𝑦−1𝑑𝑡 to denote Euler's beta function and 𝒟′(𝐼) to denote the space of

distributions on 𝐼. When 1 < 𝑝 < ∞, by 𝑝
′
we denote Hölder conjugate to 𝑝, i.e.

1
𝑝

+ 1
𝑝′

= 1. We write 𝑓1 ∼ 𝑓2 if there exists universal constants 𝐶1, 𝐶2 > 0 such that

4
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𝐶1𝑓2 ≤ 𝑓1 ≤ 𝐶2𝑓2 on their domain. We set

Φ𝑝(𝜆) =

{︂
|𝜆|𝑝−2𝜆 for 𝜆 ̸= 0

0 for 𝜆 = 0

for 𝜆 ∈ R, 𝑝 > 1. An easy veri�cation shows that Φ𝑝 is a continuous function.
We also de�ne for 𝜃 ̸= −1:

𝑇 (𝜆) =

{︂
1

𝜃+1
𝜆𝜃+1 when 𝜆 > 0

0 when 𝜆 ≤ 0
and 𝜏(𝜆) =

{︂
𝜆𝜃 when 𝜆 > 0
0 when 𝜆 ≤ 0.

(2.1)

It is clear that 𝑇 is di�erentiable on (0,∞) and 𝑇
′
= 𝜏 on that set.

Poincaré inequalities.
We will be using the following Poincaré inequality. We submit the proof for readers
convenience.

Proposition 2.1. Let −∞ < 𝑎 < 𝑏 < +∞, 1 < 𝑝 <∞. Then inequality∫︁ 𝑏

𝑎

|𝑓(𝑥)|𝑝𝑑𝑥 ≤ 𝐶𝑝(𝑎, 𝑏)

∫︁ 𝑏

𝑎

|𝑓 ′(𝑥)|𝑝𝑑𝑥 (2.2)

holds with best constant 𝐶𝑝(𝑎, 𝑏), where

i) 𝐶𝑝(𝑎, 𝑏) = (𝑏− 𝑎)𝑝
(︁

𝑝1/𝑝
′
(𝑝′)1/𝑝

𝐵(1/𝑝,1/𝑝′)

)︁𝑝
=

(𝑝(𝑏−𝑎) sin(𝜋
𝑝 ))

𝑝

(𝑝−1)𝜋𝑝 for

𝑓 ∈ 𝑍1,𝑝((𝑎, 𝑏)) := {𝑤 ∈ 𝑊 1,𝑝((𝑎, 𝑏)) : 𝑤(𝑎) = 0 or 𝑤(𝑏) = 0},

ii) 𝐶𝑝(𝑎, 𝑏) = 2−𝑝(𝑏− 𝑎)𝑝
(︁

𝑝1/𝑝
′
(𝑝′)1/𝑝

𝐵(1/𝑝,1/𝑝′)

)︁𝑝
=

(𝑝(𝑏−𝑎) sin(𝜋
𝑝 ))

𝑝

2𝑝(𝑝−1)𝜋𝑝 for 𝑓 ∈ 𝑊 1,𝑝
0 ((𝑎, 𝑏)).

Proof. For part ii) see e.g. [4, page 180]. To prove part i) we �rst observe that it
su�ces to obtain the statement in case 𝑎 = 0, 𝑏 = 1. We will deal with the following
objects:

𝑊 1,𝑝
0,𝑠𝑦𝑚((−1, 1)) := {𝑤 ∈ 𝑊 1,𝑝

0 ((−1, 1)) : 𝑤(𝑥) = 𝑤(−𝑥)},
𝑍1,𝑝

𝑟 ((0, 1)) := {𝑤 ∈ 𝑊 1,𝑝((0, 1) : 𝑤(1) = 0},

𝐽(𝑢) :=

∫︀ 1

−1
|𝑢′

(𝜏)|𝑝𝑑𝜏∫︀ 1

−1
|𝑢(𝜏)|𝑝𝑑𝜏

, 𝑢 ̸≡ 0,

𝐼(𝑢) :=

∫︀ 1

0
|𝑢′

(𝜏)|𝑝𝑑𝜏∫︀ 1

0
|𝑢(𝜏)|𝑝𝑑𝜏

, 𝑢 ̸≡ 0.

5
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We observe that when 𝑢 ∈ 𝑊 1,𝑝
0 ((−1, 1)) is nonnegative then the function 𝑣(𝑥) =(︁

𝑢𝑝(𝑥)+𝑢𝑝(−𝑥)
2

)︁ 1
𝑝
satis�es

∫︀ 1

−1
𝑣𝑝𝑑𝑥 =

∫︀ 1

−1
𝑢𝑝𝑑𝑥 and |𝑣′

(𝑥)|𝑝 ≤ 1
2

(︀
|𝑢′

(𝑥)|𝑝 + |𝑢′
(−𝑥)|𝑝

)︀
(this

argument is a simple modi�cation of the argument taken from [13, proof of Lemma 3.3]),

therefore
∫︀ 1

−1
|𝑣′ |𝑝𝑑𝑥 ≤

∫︀ 1

−1
|𝑢′|𝑝𝑑𝑥 and

𝒜 := inf{𝐽(𝑢) : 𝑢 ∈ 𝑊 1,𝑝
0 ((−1, 1)), 𝑢 ̸≡ 0} = inf{𝐽(𝑢) : 𝑢 ∈ 𝑊 1,𝑝

0,𝑠𝑦𝑚((−1, 1)), 𝑢 ̸≡ 0}.

Moreover, the mapping 𝑢 ↦→ �̂� where �̂� is given by �̂�(𝑥) =

{︂
𝑢(𝑥) when 𝑥 ∈ [0, 1],
𝑢(−𝑥) when 𝑥 ∈ [−1, 0)

is a surjection of 𝑍1,𝑝
𝑟 ((0, 1)) onto 𝑊 1,𝑝

0,𝑠𝑦𝑚((−1, 1)) and we have 𝐽(�̂�) = 𝐼(𝑢). Hence

𝒜 = inf{𝐼(𝑢) : 𝑢 ∈ 𝑍1,𝑝
𝑟 ((0, 1)), 𝑢 ̸≡ 0} = inf{𝐼(𝑢) : 𝑢 ∈ 𝑍1,𝑝((0, 1)), 𝑢 ̸≡ 0}.

As already shown in ii) we have 𝒜 =
(︁

𝑝1/𝑝
′
(𝑝′)1/𝑝

𝐵(1/𝑝,1/𝑝′)

)︁−𝑝

and the statement follows. �

Remark 2.1. As is well known (see [17, Sections 1.1 and 1.4]), �niteness of the right-
hand side in (2.2) and assumption 𝑓 ∈ 𝑊 1,1

𝑙𝑜𝑐 ((𝑎, 𝑏)) imply 𝑓 ∈ 𝑊 1,𝑝((𝑎, 𝑏)) ∩ 𝐶([𝑎, 𝑏]).

Nonlinear Sobolev spaces.
We introduce the following possibly nonlinear Sobolev and Beppo�Levi type �spaces�.

Definition 2.1. Let 𝑚 ∈ N, 𝑝 ≥ 1, −∞ ≤ 𝑎 < 𝑏 ≤ +∞, 𝜃 ∈ R.

i)(nonlinear Sobolev spaces) By𝑊𝑚,𝑝,𝜃((𝑎, 𝑏)) we will denote the subset of𝑊𝑚,1
𝑙𝑜𝑐 ((𝑎, 𝑏))

consisting of those functions, for which
𝑚∑︁
𝑘=0

∫︁
(𝑎,𝑏)∩{𝑥:𝑓(𝑥)̸=0}

|𝑓 (𝑘)(𝑥)|𝑝|𝑓(𝑥)|𝑝𝜃𝑑𝑥 <∞.

ii)(nonlinear Beppo–Levi spaces) By 𝐿𝑚,𝑝,𝜃((𝑎, 𝑏)) we will denote the subset of such
functions in 𝑊𝑚,1

𝑙𝑜𝑐 ((𝑎, 𝑏)), which satisfy the condition∫︁
(𝑎,𝑏)∩{𝑥:𝑓(𝑥)̸=0}

|𝑓 (𝑚)(𝑥)|𝑝|𝑓(𝑥)|𝑝𝜃𝑑𝑥 <∞.

We also de�ne the local spaces 𝑊𝑚,𝑝,𝜃
𝑙𝑜𝑐 ((𝑎, 𝑏)) and 𝐿𝑚,𝑝,𝜃

𝑙𝑜𝑐 ((𝑎, 𝑏)) in the natural way,
i.e. 𝑓 belongs to the related local space 𝑋𝑙𝑜𝑐((𝑎, 𝑏)) if for any [𝑎

′
, 𝑏

′
] ⊆ (𝑎, 𝑏) we have

𝑓 ∈ 𝑋((𝑎
′
, 𝑏

′
)). Analogously we de�ne these spaces on an arbitrary open set in R.

Our considerations will be restricted to the case𝑚 ∈ {1, 2} and to nonnegative functions.

Compositions of Sobolev functions.
We will be using the following well known fact (see e.g. [17]).

Lemma 2.1. If 𝑓 : [−𝑅,𝑅] → R is absolutely continuous with values in the interval
[𝛼, 𝛽] and 𝐿 : [𝛼, 𝛽] → R is Lipschitz, then the function (𝐿 ∘ 𝑓)(𝑥) := 𝐿(𝑓(𝑥)) is
absolutely continuous on [−𝑅,𝑅].
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3 Strongly nonlinear multiplicative inequalities

Our consideration will be based on the following theorem which is a modi�cation of a
strongly nonlinear multiplicative inequalities obtained in [11, Propositions 4.2 and 4.3]
where assumption 𝑓 ∈ 𝑊 2,1

𝑙𝑜𝑐 ((𝑎, 𝑏)) is weakened to 𝑓 ∈ 𝑊 2,1
𝑙𝑜𝑐 (𝐼𝑓 ).

Theorem 3.1. Let −∞ < 𝑎 < 𝑏 < ∞, 𝑝 ≥ 2, 𝜃 ∈ R, 𝜃 ̸= −1
𝑝
, Φ𝑝(·) be given by (2.1).

Moreover, let function 𝑓 : (𝑎, 𝑏) → R be nonnegative, continuous and such that

a) 𝑓 ∈ 𝑊 2,1
𝑙𝑜𝑐 (𝐼𝑓 ) where 𝐼𝑓 = {𝑥 ∈ (𝑎, 𝑏) : 𝑓(𝑥) > 0}. In particular function

𝒜𝑓(𝑥) :=
1

𝜃𝑝+ 1
Φ𝑝(𝑓

′(𝑥))(𝑓(𝑥))𝜃𝑝+1𝜒{𝑓>0}(𝑥) (3.1)

is well defined;

b) in case 𝜃 < −1
𝑝
let function 𝑓 be either strictly positive or function 𝒜𝑓 be contin-

uous on (𝑎, 𝑏).

Then for every 𝑟, 𝑅 such that 𝑎 < 𝑟 < 𝑅 < 𝑏, we have∫︁
{𝑥∈(𝑟,𝑅):𝑓(𝑥)>0}

|𝑓 ′(𝑥)|𝑝(𝑓(𝑥))𝜃𝑝𝑑𝑥 ≤ (3.2)(︂
𝑝− 1

|1 + 𝜃𝑝|

)︂ 𝑝
2
∫︁
{𝑥∈(𝑟,𝑅):𝑓(𝑥)>0}

(︁√︀
|𝑓(𝑥)𝑓 ′′(𝑥)|

)︁𝑝
(𝑓(𝑥))𝜃𝑝𝑑𝑥+ Θ̃(𝑟, 𝑅),

where Θ̃(𝑟, 𝑅) := 𝒜𝑓(𝑅) −𝒜𝑓(𝑟).

Remark 3.1. Obviously, when the right-hand side in (3.2) is �nite for every 𝑎 < 𝑟 <

𝑅 < 𝑏, we necessarily have 𝑓 ∈ 𝑊
2,𝑝/2
𝑙𝑜𝑐 (𝐼𝑓 ).

Remark 3.2. If 𝑥 ∈ (𝑎, 𝑏) belongs to the boundary of 𝐼𝑓 , i.e. 𝑓(𝑥) = 0 then 𝑓 ′(𝑥) might
not be de�ned according to our assumptions. In such a case
𝒜𝑓(𝑥) = 1

𝜃𝑝+1
Φ𝑝(𝑓

′(𝑥))(𝑓(𝑥))𝜃𝑝+1𝜒{𝑓>0}(𝑥) = 0.

Proof. We start by recalling Lemma 4.1 of [11] with ℎ(𝜆) = 𝜆𝜃𝑝.

Lemma 3.1 ([11]). Let −∞ ≤ 𝑎 < 𝑏 ≤ ∞, 𝑝 ≥ 2, 𝜃 ∈ R, 𝜃 ̸= −1
𝑝
, 𝜂 > 0. Then for

every 𝑓 ∈ 𝑊 2,1
𝑙𝑜𝑐 ((𝑎, 𝑏)) such that 𝑓 ≥ 𝜂 and for every 𝑟, 𝑅 such that 𝑎 < 𝑟 < 𝑅 < 𝑏, we

have∫︁ 𝑅

𝑟

|𝑓 ′(𝑥)|𝑝(𝑓(𝑥))𝜃𝑝𝑑𝑥 ≤
(︂

𝑝− 1

|1 + 𝜃𝑝|

)︂ 𝑝
2
∫︁ 𝑅

𝑟

(︁√︀
|𝑓(𝑥)𝑓 ′′(𝑥)|

)︁𝑝
(𝑓(𝑥))𝜃𝑝𝑑𝑥+ Θ(𝑟, 𝑅),

(3.3)
where Θ(𝑟, 𝑅) = 1

𝜃𝑝+1

(︀
Φ𝑝(𝑓

′(𝑅))(𝑓(𝑅))𝜃𝑝+1 − Φ𝑝(𝑓
′(𝑟))(𝑓(𝑟))𝜃𝑝+1

)︀
.
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We return to the proof of Theorem 3.1, where assumptions: 𝑓 ≥ 𝜂 and 𝑓 ∈ 𝑊 2,1
𝑙𝑜𝑐 ((𝑎, 𝑏))

are relaxed.
Let 𝑟, 𝑅 be such that 𝑎 < 𝑟 < 𝑅 < 𝑏. Let us consider the following decomposition

𝐼𝑓 (𝑟, 𝑅) := (𝑟, 𝑅) ∩ 𝐼𝑓 = {𝑥 ∈ (𝑟, 𝑅) : 𝑓(𝑥) > 0} =
⋃︁
𝑘

𝐼𝑘, (3.4)

where each 𝐼𝑘 is of the form

(A) (𝛼𝑘, 𝛽𝑘) when 𝑓(𝛼𝑘) = 𝑓(𝛽𝑘) = 0,

(B) (𝑟, 𝛽𝑘) when 𝑓(𝑟) ̸= 0, 𝑓(𝛽𝑘) = 0,

(C) (𝛼𝑘, 𝑅) when 𝑓(𝛼𝑘) = 0, 𝑓(𝑅) ̸= 0,

(D) (𝑟, 𝑅) when 𝑓(𝑟) ̸= 0 and 𝑓(𝑅) ̸= 0.

The proof will now proceed in two steps.

Step 1. We prove a variant of inequality (3.2) with (𝑟, 𝑅) substituted by 𝐼𝑘.

We consider two (su�ciently small) sequences of positive numbers {𝜀𝑘,𝑙}𝑙∈N, {𝛿𝑘,𝑙}𝑙∈N,
converging to zero and apply Lemma 3.1 for function 𝑓 on the interval [𝛼𝑘+𝜀𝑘,𝑙, 𝛽𝑘−𝛿𝑘,𝑙].
Hence∫︁ 𝛽𝑘−𝛿𝑘,𝑙

𝛼𝑘+𝜀𝑘,𝑙

|𝑓 ′(𝑥)|𝑝(𝑓(𝑥))𝜃𝑝𝑑𝑥 ≤(︂
𝑝− 1

|1 + 𝜃𝑝|

)︂ 𝑝
2
∫︁ 𝛽𝑘−𝛿𝑘,𝑙

𝛼𝑘+𝜀𝑘,𝑙

(︁√︀
|𝑓(𝑥)𝑓 ′′(𝑥)|

)︁𝑝
|𝑓(𝑥)|𝜃𝑝𝑑𝑥+ Θ(𝛼𝑘 + 𝜀𝑘,𝑙, 𝛽𝑘 − 𝛿𝑘,𝑙),

where
Θ(𝛼𝑘 + 𝜀𝑘,𝑙, 𝛽𝑘 − 𝛿𝑘,𝑙) = 𝒜𝑓(𝛽𝑘 − 𝛿𝑘,𝑙) −𝒜𝑓(𝛼𝑘 + 𝜀𝑘,𝑙).

We will let 𝑙 → ∞. Obviously we have

lim
𝑙→∞

∫︁ 𝛽𝑘−𝛿𝑘,𝑙

𝛼𝑘+𝜀𝑘,𝑙

|𝑓 ′(𝑥)|𝑝(𝑓(𝑥))𝜃𝑝𝑑𝑥 =

∫︁ 𝛽𝑘

𝛼𝑘

|𝑓 ′(𝑥)|𝑝(𝑓(𝑥))𝜃𝑝𝑑𝑥

and

lim
𝑙→∞

∫︁ 𝛽𝑘−𝛿𝑘,𝑙

𝛼𝑘+𝜀𝑘,𝑙

(︁√︀
|𝑓(𝑥)𝑓 ′′(𝑥)|

)︁𝑝
|𝑓(𝑥)|𝜃𝑝𝑑𝑥 =

∫︁ 𝛽𝑘

𝛼𝑘

(︁√︀
|𝑓(𝑥)𝑓 ′′(𝑥)|

)︁𝑝
|𝑓(𝑥)|𝜃𝑝𝑑𝑥.

Now we verify the convergence of Θ(𝛼𝑘 + 𝜀𝑘,𝑙, 𝛽𝑘 − 𝛿𝑘,𝑙), dealing with each case (A)-(D)
separately.
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Case (a). Assume �rst that 𝜃 > −1
𝑝
.

As 𝒜𝑓(𝑥) has the same sign as 𝑓 ′(𝑥) and 𝑓 has local minima at 𝛼𝑘 and 𝛽𝑘, we can �nd
numbers 𝜀𝑘,𝑙 → 0, 𝛿𝑘,𝑙 → 0 as 𝑙 → ∞ such that 𝑓 ′(𝛼𝑘 + 𝜀𝑘,𝑙) ≥ 0, 𝑓 ′(𝛽𝑘 − 𝛿𝑘,𝑙) ≤ 0 for
every 𝑘, 𝑙. Therefore obviously

Θ(𝛼𝑘 + 𝜀𝑘,𝑙, 𝛽𝑘 − 𝛿𝑘,𝑙) ≤ 0.

In case 𝜃 < −1
𝑝
we use assumption b) to get:

lim
𝑙→0

Θ(𝛼𝑘 + 𝜀𝑘,𝑙, 𝛽𝑘 − 𝛿𝑘,𝑙) = 0.

Thus in both cases we have∫︁ 𝛽𝑘

𝛼𝑘

|𝑓 ′(𝑥)|𝑝(𝑓(𝑥))𝜃𝑝𝑑𝑥 ≤
(︂

𝑝− 1

|1 + 𝜃𝑝|

)︂ 𝑝
2
∫︁ 𝛽𝑘

𝛼𝑘

(︁√︀
|𝑓(𝑥)𝑓 ′′(𝑥)|

)︁𝑝
|𝑓(𝑥)|𝜃𝑝𝑑𝑥,

and so the estimate (3.2) holds.

Case (b).
When 𝐼𝑘 = (𝑟, 𝛽𝑘), we get for suitably chosen positive numbers 𝛿𝑘,𝑙 converging to zero

𝒜𝑓(𝛽𝑘 − 𝛿𝑘,𝑙) ≤ 0 when 𝜃 > −1

𝑝
,

𝒜𝑓(𝛽𝑘 − 𝛿𝑘,𝑙)
𝑙→∞→ 0 when 𝜃 < −1

𝑝
.

By similar arguments as in Case (a) but applied to intervals (𝑟, 𝛽𝑘 − 𝛿𝑘,𝑙) we obtain∫︁ 𝛽𝑘

𝑟

|𝑓 ′(𝑥)|𝑝(𝑓(𝑥))𝜃𝑝𝑑𝑥 ≤
(︂

𝑝− 1

|1 + 𝜃𝑝|

)︂ 𝑝
2
∫︁ 𝛽𝑘

𝑟

(︁√︀
|𝑓(𝑥)𝑓 ′′(𝑥)|

)︁𝑝
|𝑓(𝑥)|𝜃𝑝𝑑𝑥−𝒜𝑓(𝑟),

which is (3.2) in this case.

Case (c). For 𝐼𝑘 = (𝛼𝑘, 𝑅), (3.2) is obtained by similar arguments and reads as:∫︁ 𝑅

𝛼𝑘

|𝑓 ′(𝑥)|𝑝(𝑓(𝑥))𝜃𝑝𝑑𝑥 ≤
(︂

𝑝− 1

|1 + 𝜃𝑝|

)︂ 𝑝
2
∫︁ 𝛽𝑘

𝑟

(︁√︀
|𝑓(𝑥)𝑓 ′′(𝑥)|

)︁𝑝
|𝑓(𝑥)|𝜃𝑝𝑑𝑥+ 𝒜𝑓(𝑅).

Case (d).
We apply Lemma 3.1 directly.

Step 2. Summing up these inequalities with respect to 𝑘 or dealing with Case (d), we
get ∫︁

(𝑟,𝑅)∩{𝑥:𝑓(𝑥)>0}
|𝑓 ′(𝑥)|𝑝(𝑓(𝑥))𝜃𝑝𝑑𝑥 ≤(︂

𝑝− 1

|1 + 𝜃𝑝|

)︂ 𝑝
2
∫︁
(𝑟,𝑅)∩{𝑥:𝑓(𝑥)>0}

(︁√︀
|𝑓(𝑥)𝑓 ′′(𝑥)|

)︁𝑝
|𝑓(𝑥)|𝜃𝑝𝑑𝑥+ 𝒜𝑓(𝑅) −𝒜𝑓(𝑟).

9



p
re
p
ri
n
t
IM

A
T
:
K
a
ła
m
a
js
ka

a
n
d
M
a
zo
w
ie
ck
a
J
u
n
e
4
,
2
0
1
4

S
o
m
e
re
g
u
la
ri
ty

re
su
lt
s
to

th
e
g
en
er
a
li
ze
d
E
m
d
en
–
F
o
w
le
r
eq
u
a
ti
o
n
w
it
h
ir
re
g
u
la
r
d
a
ta

which ends the proof of the statement. �

Our next statement is an obvious consequence of Theorem 3.1.

Corollary 3.1. Let the assumptions of Theorem 3.1 be satisfied (in particular 𝜃 ̸= −1
𝑝
)

and

lim inf
𝑅↗𝑏

𝒜𝑓(𝑅) − lim sup
𝑟↘𝑎

𝒜𝑓(𝑟) ≤ 0.

Then we have∫︁
{𝑥∈(𝑎,𝑏):𝑓(𝑥)>0}

|𝑓 ′(𝑥)|𝑝(𝑓(𝑥))𝜃𝑝𝑑𝑥 ≤(︂
𝑝− 1

|1 + 𝜃𝑝|

)︂ 𝑝
2
∫︁
{𝑥∈(𝑎,𝑏):𝑓(𝑥)>0}

(︁√︀
|𝑓(𝑥)𝑓 ′′(𝑥)|

)︁𝑝
(𝑓(𝑥))𝜃𝑝𝑑𝑥.

(3.5)

Remark 3.3. We do not know if the inequality (3.5) holds for 𝜃 = −1
𝑝
. However, we

have weaker inequality for 𝑓 ∈ 𝑊 2,1
𝑙𝑜𝑐 ((𝑎, 𝑏)) (see [11, Proposition 6.3]):∫︁

{𝑥∈(𝑎,𝑏):𝑓(𝑥)̸=0}

|𝑓 ′|𝑝

|𝑓 |
𝑑𝑥 ≤

(︁√︀
𝑝− 1

)︁𝑝 ∫︁
{𝑥∈(𝑎,𝑏):𝑓(𝑥) ̸=0}

|𝑓𝑓 ′′ ln(|𝑓 |)| 𝑝2
|𝑓 |

𝑑𝑥. (3.6)

Remark 3.4. Suppose that we would like to relax the nonnegativity assumption on 𝑓
in Theorem 3.1. If 𝜃 ≤ −1

𝑝
, 𝑓 ∈ 𝑊 2,1

𝑙𝑜𝑐 ((𝑎, 𝑏)) and 𝑓 has a single zero in (𝑎, 𝑏) then

the inequality (3.5) cannot hold with the left-hand side �nite when 𝑓 ′ is continuous on
(𝑎, 𝑏) and locally absolutely continuous on (𝑎, 𝑏), no matter what boundary conditions
are required. Indeed, in such a case we have

𝑓(𝑥) = (𝑥− 𝑥0)𝜔(𝑥), where 𝜔(𝑥) =
1

𝑥− 𝑥0

∫︁ 𝑥

𝑥0

𝑓 ′(𝜏)𝑑𝜏
𝑥→𝑥0−−−→ 𝑓 ′(𝑥0) ̸= 0,

in a neighborhood 𝐼 = (𝑥0 − 𝜀, 𝑥0 + 𝜀) ⊆ (𝑎, 𝑏) of 𝑥0, where 𝑥0 is such that 𝑓(𝑥0) =
0, 𝑓 ′(𝑥0) ̸= 0. We deduce that 𝜔 ∼ 𝐶𝑜𝑛𝑠𝑡 ̸= 0 on 𝐼 and so 𝑓 ∼ (𝑥− 𝑥0), 𝑓

′ ∼ 1 on 𝐼. It
follows that there exists constant 𝐶 > 0 such that:∫︁

{𝑥∈(𝑎,𝑏):𝑓(𝑥)̸=0}
|𝑓 ′(𝑥)|𝑝|𝑓(𝑥)|𝜃𝑝𝑑𝑥 ≥ 𝐶

∫︁
(𝑥0−𝜀,𝑥0+𝜀)

|𝑥− 𝑥0|𝜃𝑝𝑑𝑥

and the right-hand side is in�nite if 𝜃𝑝 ≤ −1. In case when 𝑓 is nonnegative such
situation cannot happen therefore 𝑓 cannot have single zeros.
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4 First order Poincaré inequalities

In this section we obtain certain nonlinear variants of the Poincaré inequality. As a
consequence we will �nd optimal set 𝑋 such that the mapping 𝑋 ∋ 𝑓 ↦→ 𝑇 (𝑓) belongs
to the Sobolev space 𝑊 1,𝑝((𝑎, 𝑏)), for 𝑇 given by (2.1).
In the following lemma we compute the distributional derivative of the composition
𝑓 ↦→ 𝑇 (𝑓), where the function 𝑓 belongs to a suitable nonlinear Beppo�Levi set. We
have the following result.

Lemma 4.1. Let −∞ ≤ 𝑎 < 𝑏 ≤ +∞, 𝜃 > −1, 𝑇 and 𝜏 be defined by (2.1). Moreover,
let 𝑓 ∈ 𝐶((𝑎, 𝑏)) be nonnegative and 𝑓 ∈ 𝐿1,1,𝜃

𝑙𝑜𝑐 (𝐼𝑓 ), where 𝐼𝑓 = {𝑥 ∈ (𝑎, 𝑏) : 𝑓(𝑥) > 0}.
Then 𝑇 (𝑓) ∈ 𝑊 1,1

𝑙𝑜𝑐 (𝑎, 𝑏) and

(𝑇 (𝑓))′ = 𝜏(𝑓)𝑓 ′ · 𝜒{𝑥:𝑓(𝑥)>0} (4.1)

in the distributional sense.
If 𝑓 is strictly positive then the condition 𝜃 > −1 above can be relaxed to 𝜃 ̸= −1.

For the reader's convenience we submit the proof.

Proof. We start with the proof under the assumption 𝜃 > −1.
Obviously 𝑇 (𝑓) ∈ 𝐿1

𝑙𝑜𝑐(𝑎, 𝑏) because 𝜃+1 > 0 and 𝑓 is continuous on (𝑎, 𝑏). We compute
its weak derivative from the very de�nition. Let 𝜑 ∈ 𝐶∞

0 ((𝑎, 𝑏)), then

< (𝑇 (𝑓))′, 𝜑 > = −
∫︁ 𝑏

𝑎

𝑇 (𝑓)𝜑′𝑑𝑥 = −
∫︁
(𝑎,𝑏)∩{𝑥:𝑓(𝑥)>0}

𝑇 (𝑓)𝜑′𝑑𝑥 = −
∑︁
𝑘

∫︁
𝐼𝑘

𝑇 (𝑓)𝜑′𝑑𝑥,

where 𝐼𝑘 are disjoint, open intervals such that
⋃︀

𝑘 𝐼𝑘 = (𝑎, 𝑏) ∩ {𝑥 : 𝑓(𝑥) > 0}. Every 𝐼𝑘
is of the form 𝐼𝑘 = (𝛼, 𝛽) for some 𝑎 ≤ 𝛼 < 𝛽 ≤ 𝑏, let 𝐼𝑘𝜀 = [𝛼+ 𝜀, 𝛽− 𝜀]. Then we have∫︁

𝐼𝑘

𝑇 (𝑓)𝜑′𝑑𝑥 = lim
𝜀→0

∫︁
𝐼𝑘𝜀

𝑇 (𝑓)𝜑′𝑑𝑥.

On the interval [𝛼 + 𝜀, 𝛽 − 𝜀] function 𝑓 is strictly positive and so 𝑇 (𝑓) belongs to the
space 𝑊 1,1(𝐼𝑘𝜀) (Lemma 2.1). Therefore

lim
𝜀→0

∫︁
𝐼𝑘𝜀

𝑇 (𝑓)𝜑′𝑑𝑥 = lim
𝜀→0

(︃
𝑇 (𝑓)𝜑

⃒⃒⃒𝛽−𝜀

𝛼+𝜀
−
∫︁
𝐼𝑘𝜀

(𝜏(𝑓)𝑓 ′)𝜑𝑑𝑥

)︃
= −

∫︁
𝐼𝑘

(𝜏(𝑓)𝑓 ′)𝜑𝑑𝑥. (4.2)

The last integral is �nite because 𝜑 is compactly supported, 𝑇 (𝑓) vanishes on those
endpoints of 𝐼𝑘 which are inside (𝑎, 𝑏) and 𝜏(𝑓)𝑓 ′𝜒{𝑓>0} is locally integrable on (𝑎, 𝑏).
Hence

< (𝑇 (𝑓))′, 𝜑 >=

∫︁
(𝑎,𝑏)∩{𝑥:𝑓(𝑥)>0}

(𝜏(𝑓)𝑓 ′)𝜑𝑑𝑥. (4.3)

11
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Thus 𝑇 (𝑓) ∈ 𝑊 1,1
𝑙𝑜𝑐 ((𝑎, 𝑏)) and (4.1) follows from (4.3).

When 𝑓 is strictly positive and 𝜃 ̸= −1, we still have 𝑇 (𝑓) ∈ 𝐿1
𝑙𝑜𝑐((𝑎, 𝑏)) and the

remaining part of the proof follows by the same arguments dealing with one interval 𝐼𝑘
only.

�

Remark 4.1. When we dealt with nonnegative continuous function 𝑓 possibly having
zeroes in (𝑎, 𝑏), assumption 𝜃 > −1 was required for the continuity of function 𝑇 (𝑓) at
𝑥 such that 𝑓(𝑥) = 0. The last inequality in line (4.2) holds due to that assumption.
Indeed, if for example 𝛽 ̸= 𝑏 then 𝜑 might not vanish at 𝛽 but 𝑇 (𝑓(𝛽)) = 0. When
𝜃 < −1 it is not true and 𝑇 (𝑓) is not continuous. Therefore, in such a case, the conclusion
𝑇 (𝑓) ∈ 𝑊 1,1

𝑙𝑜𝑐 ((𝑎, 𝑏)) cannot hold.

The following statement is a variant of the nonlinear Poincaré inequality.

Theorem 4.1. Let −∞ < 𝑎 < 𝑏 < +∞, 𝑝 ≥ 1, 𝜃 ∈ R, 𝑓 ∈ 𝐶((𝑎, 𝑏)) be nonnegative
and one of the assumptions (A) or (B) holds where

(A) 𝜃 > −1 and

𝑎1) 𝑓 ∈ 𝐿1,𝑝,𝜃(𝐼𝑓 ) where 𝐼𝑓 = {𝑥 ∈ (𝑎, 𝑏) : 𝑓(𝑥) > 0},
𝑎2) 𝑓 is continuous on [𝑎, 𝑏] and equal zero at at least one of the endpoints 𝑧 ∈

{𝑎, 𝑏},

(B) 𝜃 < −1, 𝑓 is strictly positive and

𝑏1) 𝑓 ∈ 𝐿1,𝑝,𝜃((𝑎, 𝑏)),

𝑏2) both limits lim𝑥→𝑎 𝑓(𝑥) and lim𝑥→𝑏 𝑓(𝑥) exist and belong to (0,∞], moreover
lim𝑥→𝑧 𝑓(𝑥) = ∞ for at least one of the endpoints 𝑧 ∈ {𝑎, 𝑏}.

Then 𝑓 1+𝜃 ∈ 𝑊 1,𝑝((𝑎, 𝑏)), (𝑓 1+𝜃)′ = (1 + 𝜃)𝑓 𝜃𝑓 ′ · 𝜒{𝑥:𝑓(𝑥)>0} and we have∫︁
(𝑎,𝑏)∩{𝑓(𝑥)>0}

(𝑓(𝑥))𝑝(𝑓(𝑥))𝜃𝑝𝑑𝑥 ≤ 𝐶𝑝
𝑝,𝜃(𝑎, 𝑏)

∫︁
(𝑎,𝑏)∩{𝑓(𝑥)>0}

|𝑓 ′(𝑥)|𝑝 (𝑓(𝑥))𝜃𝑝𝑑𝑥 (4.4)

where 𝐶𝑝,𝜃(𝑎, 𝑏) = 𝐶𝑝(𝑎, 𝑏)|1 + 𝜃| and 𝐶𝑝(𝑎, 𝑏) is the constant from Proposition 2.1, part
𝑖).

Proof. Assume �rst (A). According to Lemma 4.1 we have 𝑇 (𝑓) ∈ 𝑊 1,1
𝑙𝑜𝑐 ((𝑎, 𝑏)) and

(𝑇 (𝑓))
′

= 𝜏(𝑓)𝑓 ′𝜒𝑓>0 ∈ 𝐿𝑝((𝑎, 𝑏)). Therefore the statement follows from Proposition
2.1, part i) applied to 𝑇 (𝑓).
In case (B) due to condition 𝑏2) function 𝑇 (𝑓) obeys assumptions of Proposition 2.1,
part i).

�

12



p
re
p
ri
n
t
IM

A
T
:
K
a
ła
m
a
js
ka

a
n
d
M
a
zo
w
ie
ck
a
J
u
n
e
4
,
2
0
1
4

S
o
m
e
re
g
u
la
ri
ty

re
su
lt
s
to

th
e
g
en
er
a
li
ze
d
E
m
d
en
–
F
o
w
le
r
eq
u
a
ti
o
n
w
it
h
ir
re
g
u
la
r
d
a
ta

Remark 4.2. As follows from the above proof and Remark 2.1, assumption: 𝑓 𝜃+1 ∈
𝐶([𝑎, 𝑏]) in (A) and (B) can be relaxed to 𝑓 ∈ 𝐶((𝑎, 𝑏)) and conditions 𝑎2) and 𝑏2)
substituted by
𝑎

′
2) 𝑓 is continuous and equal zero at at least one of the endpoints 𝑧 ∈ {𝑎, 𝑏},
𝑏
′
2) lim𝑥→𝑧 𝑓(𝑥) = ∞ for at least one of the endpoints 𝑧 ∈ {𝑎, 𝑏}.

Remark 4.3. Assume that 𝜃 > −1 and consider the mapping

𝑓 ↦→ 𝑇 (𝑓) =
1

1 + 𝜃
· 𝑓 1+𝜃

restricted to nonnegative continuous functions on [𝑎, 𝑏] the set of which we will denote
by 𝐶≥([𝑎, 𝑏]). Lemma 4.1 and the veri�cation of the 𝐿𝑝 integrability show that 𝑇 :
𝐿1,𝑝,𝜃((𝐼𝑓 )) ∩ 𝐶≥([𝑎, 𝑏]) ↦→ 𝑊 1,𝑝((𝑎, 𝑏)) ∩ 𝐶≥([𝑎, 𝑏]) is well de�ned. Moreover, it is one-

to-one. It is also surjective as for any 𝑤 ∈ 𝑊 1,𝑝((𝑎, 𝑏)) ∩ 𝐶≥([𝑎, 𝑏]) mapping 𝑓 := 𝑤
1

1+𝜃

belongs to 𝐶≥([𝑎, 𝑏]) ∩ 𝑊 1,1
𝑙𝑜𝑐 (𝐼𝑓 ) according to Lemma 2.1. By Lemma 4.1 𝑓 ′ can be

computed almost everywhere and (𝑓 1+𝜃)
′

= (1 + 𝜃)𝑓 𝜃𝑓 ′ = 𝑤
′ ∈ 𝐿𝑝((𝑎, 𝑏)). This shows

that set 𝑋 = 𝐿1,𝑝,𝜃(𝐼𝑓 ) ∩ 𝐶≥([𝑎, 𝑏]) is the optimal set for which property

𝑋 ∋ 𝑓 ↦→ 𝑓 1+𝜃 ∈ 𝑊 1,𝑝((𝑎, 𝑏)) ∩ 𝐶≥([𝑎, 𝑏]), (4.5)

holds. For some selected works dealing with compositions of Sobolev functions see e.g.
[3, 6] and their references.

Remark 4.4. 𝑇 (𝑓) must vanish at at least one of the endpoints of the interval as for
example for constant positive functions inequality (4.4) does not hold.

5 Second order Poincaré inequalities

We are now to derive second order nonlinear Poincaré inequalities.

Theorem 5.1. Suppose that −∞ < 𝑎 < 𝑏 < ∞, 𝑝 ≥ 2, 𝜃 ∈ R, 𝜃 ̸∈ {−1
𝑝
,−1},

𝑓 ∈ 𝐶((𝑎, 𝑏)) is nonnegative,

𝒜𝑓(𝑥) :=
1

𝜃𝑝+ 1
Φ𝑝(𝑓

′(𝑥))(𝑓(𝑥))𝜃𝑝+1𝜒{𝑓(𝑥)>0},

and one of conditions (C) or (D) holds where

(C) 𝜃 > −1 and

𝑐1) 𝑓 ∈ 𝑊 2,1
𝑙𝑜𝑐 (𝐼𝑓 ) where 𝐼𝑓 = {𝑥 ∈ (𝑎, 𝑏) : 𝑓(𝑥) > 0},

𝑐2) 𝑓 is continuous and equal zero at at least one of the endpoints 𝑧 ∈ {𝑎, 𝑏},

13



p
re
p
ri
n
t
IM

A
T
:
K
a
ła
m
a
js
ka

a
n
d
M
a
zo
w
ie
ck
a
J
u
n
e
4
,
2
0
1
4

S
o
m
e
re
g
u
la
ri
ty

re
su
lt
s
to

th
e
g
en
er
a
li
ze
d
E
m
d
en
–
F
o
w
le
r
eq
u
a
ti
o
n
w
it
h
ir
re
g
u
la
r
d
a
ta

𝑐3) lim inf𝑅↗𝑏𝒜𝑓(𝑅) − lim sup𝑟↘𝑎 𝒜𝑓(𝑟) ≤ 0,

𝑐4) in case 𝜃 < −1
𝑝
function 𝑓 is either strictly positive on (𝑎, 𝑏) or function

𝒜𝑓(𝜆) is continuous on (𝑎, 𝑏).

(D) 𝜃 < −1, 𝑓 is strictly positive on (𝑎, 𝑏) and

𝑑1) 𝑓 ∈ 𝑊 2,1
𝑙𝑜𝑐 ((𝑎, 𝑏)),

𝑑2) lim𝑥→𝑧 𝑓(𝑥) = ∞ for at least one of the endpoints 𝑧 ∈ {𝑎, 𝑏},
𝑑3) condition 𝑐3) holds, equivalently

lim sup
𝑅↗𝑏

Φ𝑝(𝑓
′(𝑅))(𝑓(𝑅))𝜃𝑝+1 − lim inf

𝑟↘𝑎
Φ𝑝(𝑓

′(𝑟))(𝑓(𝑟))𝜃𝑝+1 ≥ 0.

Then we have∫︁
(𝑎,𝑏)∩{𝑥:𝑓(𝑥)>0}

(𝑓(𝑥))𝑝(𝑓(𝑥))𝜃𝑝𝑑𝑥 ≤ ̃︀𝐴∫︁
(𝑎,𝑏)∩{𝑥:𝑓(𝑥)>0}

|𝑓 ′′(𝑥)|𝑝(𝑓(𝑥))𝜃𝑝𝑑𝑥 (5.1)∫︁
(𝑎,𝑏)∩{𝑥:𝑓(𝑥)>0}

|𝑓 ′(𝑥)|𝑝(𝑓(𝑥))𝜃𝑝𝑑𝑥 ≤ ̃︀𝐵 ∫︁
(𝑎,𝑏)∩{𝑥:𝑓(𝑥)>0}

|𝑓 ′′(𝑥)|𝑝(𝑓(𝑥))𝜃𝑝𝑑𝑥 (5.2)

where

̃︀𝐴 =

(︂
𝐶2

𝑝(𝑎, 𝑏)(1 + 𝜃)2 · 𝑝− 1

|1 + 𝜃𝑝|

)︂𝑝

, ̃︀𝐵 =

(︂
𝐶𝑝(𝑎, 𝑏)|1 + 𝜃| · 𝑝− 1

|1 + 𝜃𝑝|

)︂𝑝

and 𝐶𝑝(𝑎, 𝑏) is the constant from Proposition 2.1, part 𝑖).

Proof. Let 𝑟 and 𝑅 be such that 𝑎 < 𝑟 < 𝑅 < 𝑏 and for simplicity we denote

𝐴(𝑟, 𝑅) :=

∫︁
(𝑟,𝑅)∩{𝑓>0}

(𝑓(𝑥))𝑝(𝑓(𝑥))𝜃𝑝𝑑𝑥, (5.3)

𝐵(𝑟, 𝑅) :=

∫︁
(𝑟,𝑅)∩{𝑓>0}

|𝑓 ′(𝑥)|𝑝(𝑓(𝑥))𝜃𝑝𝑑𝑥,

𝐶(𝑟, 𝑅) :=

∫︁
(𝑟,𝑅)∩{𝑓>0}

|𝑓 ′′(𝑥)|𝑝(𝑓(𝑥))𝜃𝑝𝑑𝑥,

𝐴 := 𝐴(𝑎, 𝑏), 𝐵 := 𝐵(𝑎, 𝑏), 𝐶 := 𝐶(𝑎, 𝑏)

Θ̃(𝑟, 𝑅) :=
1

𝜃𝑝+ 1

(︀
Φ𝑝(𝑓

′(𝑅))(𝑓(𝑅))𝜃𝑝+1𝜒{𝑓(𝑅)>0} − Φ𝑝(𝑓
′(𝑟))(𝑓(𝑟))𝜃𝑝+1𝜒{𝑓(𝑟)>0}

)︀
= 𝒜𝑓(𝑅) −𝒜𝑓(𝑟),

Θ̃ := lim inf
𝑅↗𝑏,𝑟↘𝑎

Θ̃(𝑟, 𝑅).

We may assume that 𝐶 < ∞ and 0 < 𝐵 ≤ ∞ as otherwise inequalities follow trivially
(in case 𝐵 = 0 we have 𝑓 ≡ 0).

14
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We divide the proof into four steps.

Step 1. We �rst show that

𝐵(𝑟, 𝑅) ≤
(︂

𝑝− 1

|1 + 𝜃𝑝|

)︂ 𝑝
2

(𝐴(𝑟, 𝑅))
1
2 · (𝐶(𝑟, 𝑅))

1
2 + Θ̃(𝑟, 𝑅), (5.4)

in particular when only 𝐴(𝑟, 𝑅) is �nite, then 𝐵(𝑟, 𝑅) is �nite as well.

Indeed, by our assumptions (𝑐1), 𝑐4), 𝑑1)) we may apply Theorem 3.1. This together
with a (weighted) Schwarz inequality gives

∫︁
(𝑟,𝑅)∩{𝑓>0}

|𝑓 ′(𝑥)|𝑝(𝑓(𝑥))𝜃𝑝𝑑𝑥

≤
(︂

𝑝− 1

|1 + 𝜃𝑝|

)︂ 𝑝
2
∫︁
(𝑟,𝑅)∩{𝑓>0}

(︁√︀
|𝑓(𝑥)𝑓 ′′(𝑥)|

)︁𝑝
(𝑓(𝑥))𝜃𝑝𝑑𝑥+ Θ̃(𝑟, 𝑅)

≤
(︂

𝑝− 1

|1 + 𝜃𝑝|

)︂ 𝑝
2
(︂∫︁

(𝑟,𝑅)∩{𝑓>0}
|𝑓 ′′(𝑥)|𝑝(𝑓(𝑥))𝜃𝑝𝑑𝑥

)︂ 1
2

·
(︂∫︁

(𝑟,𝑅)∩{𝑓>0}
(𝑓(𝑥))𝑝(𝑓(𝑥))𝜃𝑝𝑑𝑥

)︂ 1
2

+ Θ̃(𝑟, 𝑅),

which is exactly (5.4).

Step 2. We now prove that under assumption 𝐴 < ∞ the inequalities (5.1), (5.2) are
satis�ed.

By our boundary conditions we can chose suitable sequences 𝑟𝑛 ↘ 𝑎 and 𝑅𝑛 ↗ 𝑏
such that (with some of the limits being possibly in�nite)

lim
𝑛→∞

Θ̃(𝑟𝑛, 𝑅𝑛) = Θ̃ ≤ 0, lim
𝑛→∞

𝐴(𝑟𝑛, 𝑅𝑛) = 𝐴,

lim
𝑛→∞

𝐵(𝑟𝑛, 𝑅𝑛) = 𝐵, lim
𝑛→∞

𝐶(𝑟𝑛, 𝑅𝑛) = 𝐶. (5.5)

Therefore, since (5.4) is satis�ed for every 𝑎 < 𝑟𝑛 < 𝑅𝑛 < 𝑏, we get after passing to the
limit with 𝑛→ ∞:

𝐵 ≤
(︂

𝑝− 1

|1 + 𝜃𝑝|

)︂ 𝑝
2

𝐴
1
2𝐶

1
2 . (5.6)

Hence 0 < 𝐵 <∞. Therefore 𝑓 ∈ 𝐿1,𝑝,𝜃(𝐼𝑓 ) and we may apply Theorem 4.1 to get:

𝐴 ≤ 𝐶𝑝
𝑝,𝜃(𝑎, 𝑏)𝐵. (5.7)

This combined with (5.6) gives

𝐵 ≤
(︂

𝑝− 1

|1 + 𝜃𝑝|

)︂ 𝑝
2

𝐶
𝑝
2
𝑝,𝜃(𝑎, 𝑏)𝐵

1
2𝐶

1
2 , (5.8)
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which after dividing by 𝐵
1
2 and using (5.7) gives

𝐵 ≤
(︂

𝑝− 1

|1 + 𝜃𝑝|
|1 + 𝜃|𝐶𝑝(𝑎, 𝑏)

)︂𝑝

𝐶,

𝐴 ≤ (|1 + 𝜃|𝐶𝑝(𝑎, 𝑏))
𝑝𝐵 ≤

(︂
𝑝− 1

|1 + 𝜃𝑝|
|1 + 𝜃|2𝐶2

𝑝(𝑎, 𝑏)

)︂𝑝

𝐶

and completes the proof of Step 2. Assumption 𝐴 < ∞ was needed to deduce that
𝐵 <∞ and to be able to divide by 𝐵

1
2 in the inequality (5.8).

Step 3. Let us now show that for any −∞ < 𝑎 < 𝑟 < 𝑅 < 𝑏 <∞, and any 𝑧 ∈ (𝑟, 𝑅)∫︁
{(𝑟,𝑅)∩{𝑓>0}}

(𝑓(𝑥))𝑝(1+𝜃)𝑑𝑥 ≤ (5.9)

2𝑝−1(𝑅− 𝑟)𝑝
∫︁
{(𝑟,𝑅)∩{𝑓>0}

|𝑓 ′(𝑥)|𝑝(𝑓(𝑥))𝜃𝑝𝑑𝑥+ 2𝑝−1(𝑅− 𝑟)(𝑓(𝑧))(1+𝜃)𝑝.

To see this, let ̃︀𝑇 (𝑥) = (𝑓(𝑥))(1+𝜃)𝜒{𝑓(𝑥)>0} and assume that the right-hand side

above is �nite. By Lemma 4.1 we have 𝑇 ∈ 𝑊 1,1
𝑙𝑜𝑐 ((𝑟, 𝑅)) (as 𝐵(𝑟, 𝑅) < ∞) and so for

any 𝑧 ∈ (𝑟, 𝑅).

|̃︀𝑇 (𝑥)| ≤|̃︀𝑇 (𝑥) − ̃︀𝑇 (𝑧)| + |̃︀𝑇 (𝑧)| ≤
⃒⃒⃒⃒∫︁ 𝑥

𝑧

̃︀𝑇 ′(𝑠)𝑑𝑠

⃒⃒⃒⃒
+ ̃︀𝑇 (𝑧)

≤(𝑅− 𝑟)

(︂(︂
1

𝑅− 𝑟

∫︁ 𝑅

𝑟

|̃︀𝑇 ′(𝑠)| 𝑑𝑠
)︂𝑝)︂ 1

𝑝

+ ̃︀𝑇 (𝑧)

≤(𝑅− 𝑟)

(︂
1

𝑅− 𝑟

∫︁ 𝑅

𝑟

|̃︀𝑇 ′(𝑠)|𝑝𝑑𝑠
)︂ 1

𝑝

+ ̃︀𝑇 (𝑧)

=(𝑅− 𝑟)1−
1
𝑝

(︂∫︁ 𝑅

𝑟

|̃︀𝑇 ′(𝑠)|𝑝𝑑𝑠
)︂ 1

𝑝

+ ̃︀𝑇 (𝑧).

For any 𝑝 ≥ 1, 𝛼, 𝛽 ≥ 0, we have (𝛼 + 𝛽)𝑝 ≤ 2𝑝−1(𝛼𝑝 + 𝛽𝑝). Therefore

(̃︀𝑇 (𝑥))𝑝 ≤ 2𝑝−1(𝑅− 𝑟)𝑝−1

∫︁ 𝑅

𝑟

|̃︀𝑇 ′(𝑠)|𝑝𝑑𝑠+ 2𝑝−1(̃︀𝑇 (𝑧))𝑝. (5.10)

According to Lemma 4.1 we have ̃︀𝑇 ′(𝑥) = (𝑓(𝑥))𝜃 · 𝑓 ′ · 𝜒{𝑥:𝑓(𝑥)>0}. Now (5.9) follows
after integrating (5.10) over (𝑟, 𝑅).

Step 4. We relax on assumption 𝐴 < ∞ from Step 2 and �nish the proof. For this,
�rst we show that 𝐵 in (5.3) must be �nite.
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According to Step 3 we have

𝐴(𝑟, 𝑅) ≤ ̃︁𝐶1(𝑟, 𝑅)𝐵(𝑟, 𝑅) + ̃︁𝐶2(𝑟, 𝑅)(𝑓(𝑧))(1+𝜃)𝑝,

where ̃︁𝐶1(𝑟, 𝑅) = 2𝑝−1(𝑅− 𝑟)𝑝, ̃︁𝐶2(𝑟, 𝑅) = 2𝑝−1(𝑅− 𝑟).

Combining this with (5.4) gives

𝐵(𝑟, 𝑅) ≤
(︂

𝑝− 1

|1 + 𝜃𝑝|

)︂ 𝑝
2

𝐴
1
2 (𝑟, 𝑅) · 𝐶

1
2 (𝑟, 𝑅) + Θ̃(𝑟, 𝑅)

≤
(︂

𝑝− 1

|1 + 𝜃𝑝|

)︂ 𝑝
2 (︁̃︁𝐶1(𝑟, 𝑅)𝐵(𝑟, 𝑅) + ̃︁𝐶2(𝑟, 𝑅)(𝑓(𝑧))𝑝(𝜃+1)

)︁ 1
2
𝐶

1
2 (𝑟, 𝑅) + Θ̃(𝑟, 𝑅)

≤
(︂

𝑝− 1

|1 + 𝜃𝑝|

)︂ 𝑝
2
(︂̃︁𝐶1

1
2 (𝑟, 𝑅)

(︁
𝐵

1
2 (𝑟, 𝑅)

)︁
+ ̃︁𝐶2

1
2 (𝑟, 𝑅)(𝑓(𝑧))

𝑝(𝜃+1)
2

)︂
𝐶

1
2 (𝑟, 𝑅) + Θ̃(𝑟, 𝑅).

The above inequality is of the form

𝑋 ≤ 𝛼𝑋
1
2 + 𝛽,

where

𝑋 = 𝐵(𝑟, 𝑅) ≥ 0, (5.11)

𝛼 =

(︂
𝑝− 1

|1 + 𝜃𝑝|

)︂ 𝑝
2 ̃︁𝐶1

1
2 (𝑟, 𝑅)𝐶

1
2 (𝑟, 𝑅), (5.12)

𝛽 =

(︂
𝑝− 1

|1 + 𝜃𝑝|

)︂ 𝑝
2 ̃︁𝐶2

1
2 (𝑟, 𝑅)(𝑓(𝑧))

𝑝|𝜃+1|
2 𝐶

1
2 (𝑟, 𝑅) + Θ̃(𝑟, 𝑅). (5.13)

It implies

𝑋
1
2 ≤ 𝛼 +

√︀
𝛼2 + 4𝛽

2
.

Consequently
𝑋 ≤ 𝛼2 + 2𝛽 (5.14)

and 𝛼, 𝛽 can be globally estimated independently of 𝑟, 𝑅. Let 𝑟𝑛 ↘ 𝑎, 𝑅𝑛 ↗ 𝑏 be such
that lim𝑛→∞ Θ̃(𝑟𝑛, 𝑅𝑛) = Θ̃ ≤ 0. It is clear that

lim
𝑛→∞

𝐶(𝑟𝑛, 𝑅𝑛) = 𝐶 <∞.

Thus and by (5.11) and (5.14)

lim
𝑛→∞

𝐵(𝑟𝑛, 𝑅𝑛) = 𝐵 <∞.

17
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Using the estimate

𝐴(𝑟𝑛, 𝑅𝑛) ≤ 2𝑝−1(𝑅− 𝑟)𝑝𝐵(𝑟𝑛, 𝑅𝑛) + 2𝑝−1(𝑅𝑛 − 𝑟𝑛)(𝑓(𝑧))𝑝(𝜃+1)𝜒{𝑓(𝑧)>0} ≤ ̃︀𝐶,
we get

lim
𝑛→∞

𝐴(𝑟𝑛, 𝑅𝑛) = 𝐴.

We deduce that 𝐴 <∞ and so we can apply Step 2 to �nish the proof. �

Remark 5.1. To apply Step 1 we required assumptions: (C): 𝑐1), 𝑐4) and (D): 𝑑1),
for Step 2 we required (C): 𝑐1), 𝑐2), 𝑐3) and (D): 𝑑1), 𝑑2), 𝑑3), while for Steps 3 and
4 we required (C): 𝑐1) and (D): 𝑑1).

6 Elliptic type a priori estimates and nonlinear eigen-

value problems

Our main goal is to show an application of the desired inequalities to obtain new a
priori estimates to certain second order quasilinear singular ODEs. For this purpose,
we consider the following problem:

𝑓 ′′(𝑥) = 𝑔(𝑥)(𝑓(𝑥))−𝜃 for 𝑥 ∈ (𝑎, 𝑏), 𝑓(𝑥) ≥ 0, 𝜃 ∈ R, (6.1)

where −∞ < 𝑎 < 𝑏 < ∞, 𝑔 ∈ 𝐿𝑝((𝑎, 𝑏)), subject to boundary condition 𝑓 ∈ ℛ which
will be introduced later.

We provide below an analysis of the ODE (6.1), ending with the precise de�nition
of its solution. Contrary to the classical approach the solution may not be an element
of the classical Sololev space, but may rather be a composition of Sobolev function.

Analysis of ODE (6.1).
Under the assumption 𝑓 ∈ 𝐶((𝑎, 𝑏)) the left-hand side has interpretation in 𝒟′

((𝑎, 𝑏)),
but for the right-hand side this is not always the case. For further analysis we consider
two situations:
1) 𝜃 ≤ 0. In this case, as 𝑔 ∈ 𝐿𝑝((𝑎, 𝑏)) and 𝑓 is locally bounded on (𝑎, 𝑏), the right hand

side is a locally integrable function, so it de�nes a distribution on (𝑎, 𝑏). In particular
(6.1) has a good interpretation in the distributional sense. Moreover, in this case we
have 𝑓 ∈ 𝑊 2,𝑝

𝑙𝑜𝑐 ((𝑎, 𝑏)) (see [17], Section 1.1.2).
2) 𝜃 > 0. In this case the right-hand side is well de�ned only on the open domain

𝐼𝑓 = {𝑥 ∈ (𝑎, 𝑏) : 𝑓(𝑥) > 0}, as otherwise (𝑓(𝑥))−𝜃 is not de�ned. Moreover, the right-
hand side in (6.1) is locally integrable on 𝐼𝑓 . Therefore (6.1) has a good interpretation
in the space of distributions on 𝐼𝑓 and 𝐼𝑓 is the optional domain for the validity of (6.1).
Note that when interpreting (6.1) in 𝒟′

(𝐼𝑓 ), we automatically deduce 𝑓 ∈ 𝑊 2,𝑝
𝑙𝑜𝑐 (𝐼𝑓 ).

18
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The above analysis leads to the following de�nition of solutions to (6.1).

Definition 6.1. Let −∞ < 𝑎 < 𝑏 <∞ and 𝑔 ∈ 𝐿𝑝((𝑎, 𝑏)), 𝜃 ∈ R. We will say that 𝑓 is
a solution to

𝑓 ′′(𝑥) = 𝑔(𝑥)(𝑓(𝑥))−𝜃 for 𝑥 ∈ (𝑎, 𝑏), 𝑓(𝑥) ≥ 0,

if 𝑓 is nonnegative and the following assumptions hold:
1) 𝑓 ∈ 𝐶((𝑎, 𝑏)), in particular 𝑓 ′′ is well de�ned in the sense of distributions;
2) in case 𝜃 ≤ 0 we assume that 𝑓 ∈ 𝑊 2,1

𝑙𝑜𝑐 ((𝑎, 𝑏)) and (6.1) holds in 𝒟′
((𝑎, 𝑏)), while in

case 𝜃 > 0 we assume 𝑓 ∈ 𝑊 2,1
𝑙𝑜𝑐 (𝐼𝑓 ) where 𝐼𝑓 = {𝑥 ∈ (𝑎, 𝑏) : 𝑓(𝑥) > 0} and the equation

holds in 𝒟′
(𝐼𝑓 ).

An example of an ODE of the form (6.1) where 𝑓 is not necessarily strictly positive and
does not belong to 𝑊 2,1

𝑙𝑜𝑐 ((𝑎, 𝑏)) is given below.

Example 6.1. Let (𝑎, 𝑏) = (−1, 1) and 𝑓(𝑥) = 𝑥𝛼𝜒𝑥>0 where 𝛼 ∈ (0, 1). Then 𝐼𝑓 =
(0, 1) and 𝑓 ∈ 𝑊 2,1(𝐼𝑓 ) but 𝑓 ̸∈ 𝑊 2,1

𝑙𝑜𝑐 ((−1, 1)). Nevertheless, we have on (0, 1)

𝑓 ′′(𝑥) = 𝛼(𝛼− 1)𝑥𝛼−2 = 𝛼(𝛼− 1)𝑥𝛼−2+𝛼𝜃𝜒𝑥>0 · (𝑥𝛼)−𝜃𝜒𝑥>0 =: 𝑔𝜃(𝑥)(𝑓(𝑥))−𝜃

and 𝑔𝜃 ∈ 𝐿𝑝(−1, 1) whenever 𝜃 < −1 + 1
𝛼

(2 − 1
𝑝
) = 𝜅𝑝 ∈ (1 − 1

𝑝
,∞). We observe that

𝑓 is not positive on the whole set (−1, 1) and De�nition 6.1 is satis�ed. In particular
Harnack principle in general does not hold for such solutions.

Our main result reads as follows.

Theorem 6.1. Suppose that −∞ < 𝑎 < 𝑏 < ∞, 𝑝 ≥ 2, 𝜃 ∈ R, 𝜃 ̸∈ {−1
𝑝
,−1},∫︀ 𝑏

𝑎
|𝑔(𝑥)|𝑝𝑑𝑥 < ∞, 𝑓 ∈ 𝐶((𝑎, 𝑏)) is the nonnegative solution of (6.1) in the sense of

Definition 6.1, and one of the conditions (C) or (D) holds where

(C) 𝜃 > −1 and

𝑐1) 𝑓 is continuous and equal zero at at least one of the endpoints 𝑧 ∈ {𝑎, 𝑏},
𝑐2)

lim inf
𝑅↗𝑏

𝒜𝑓(𝑅) − lim sup
𝑟↘𝑎

𝒜𝑓(𝑟) ≤ 0,

where 𝒜𝑓(𝑥) := 1
𝜃𝑝+1

Φ𝑝(𝑓
′(𝑥))(𝑓(𝑥))𝜃𝑝+1𝜒{𝑓>0},

𝑐3) in case 𝜃 < −1
𝑝
function 𝑓 is either strictly positive or function 𝒜𝑓(𝑥) is

continuous on (𝑎, 𝑏).

(D) 𝜃 < −1, 𝑓 is strictly positive on (𝑎, 𝑏) and
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𝑑1) lim𝑥→𝑧 𝑓(𝑥) = ∞ for at least one of the endpoints 𝑧 ∈ {𝑎, 𝑏},
𝑑2) condition 𝑐2) is satisfied, equivalently

lim sup
𝑅↗𝑏

Φ𝑝(𝑓
′(𝑅))(𝑓(𝑅))𝜃𝑝+1 − lim inf

𝑟↘𝑎
Φ𝑝(𝑓

′(𝑟))(𝑓(𝑟))𝜃𝑝+1 ≥ 0.

Then 𝑓 ∈ 𝐿2,𝑝,𝜃(𝐼𝑓 ), 𝑓 1+𝜃 ∈ 𝑊 1,𝑝((𝑎, 𝑏)) and we have:

i) ∫︁ 𝑏

𝑎

|𝑓(𝑥)|𝑝(𝑓(𝑥))𝜃𝑝𝑑𝑥 ≤ 𝐴𝑔, (6.2)∫︁
(𝑎,𝑏)∩{𝑥:𝑓(𝑥)>0}

|𝑓 ′(𝑥)|𝑝(𝑓(𝑥))𝜃𝑝𝑑𝑥 ≤ 𝐵𝑔, (6.3)∫︁
(𝑎,𝑏)∩{𝑥:𝑓(𝑥)>0}

|𝑓 ′′(𝑥)|𝑝(𝑓(𝑥))𝜃𝑝𝑑𝑥 = 𝐶𝑔, (6.4)

where

𝐴𝑔 =

{︂
𝐶2

𝑝(𝑎, 𝑏)(1 + 𝜃)2
𝑝− 1

|1 + 𝜃𝑝|

}︂𝑝 ∫︁
(𝑎,𝑏)∩{𝑥:𝑓(𝑥)>0}

|𝑔(𝑥)|𝑝 𝑑𝑥,

𝐵𝑔 =

{︂
𝐶𝑝(𝑎, 𝑏)|1 + 𝜃| 𝑝− 1

|1 + 𝜃𝑝|

}︂𝑝 ∫︁
(𝑎,𝑏)∩{𝑥:𝑓(𝑥)>0}

|𝑔(𝑥)|𝑝 𝑑𝑥,

𝐶𝑔 =

∫︁
(𝑎,𝑏)∩{𝑥:𝑓(𝑥)>0}

|𝑔(𝑥)|𝑝𝑑𝑥.

ii)

sup

{︃
|𝑓 1+𝜃(𝑥) − 𝑓 1+𝜃(𝑦)|

|𝑥− 𝑦|1−
1
𝑝

: 𝑥, 𝑦 ∈ (𝑎, 𝑏)

}︃
≤ 𝐷𝑝

(︂∫︁ 𝑏

𝑎

|𝑔(𝑥)|𝑝𝑑𝑥
)︂ 1

𝑝

,

where 𝐷𝑝 = 𝐶𝑝(𝑎, 𝑏)|1 + 𝜃|1+
1
𝑝 𝑝−1
|1+𝜃𝑝| .

iii) for 𝜃 > −1 and lim𝑥→𝑎 𝑓(𝑥) =: 𝑓(𝑎), we have

𝑓(𝑥) ≤

{︃
𝑓 1+𝜃(𝑎) + |𝑥− 𝑎|1−

1
𝑝𝐷𝑝

(︂∫︁ 𝑏

𝑎

|𝑔(𝑥)|𝑝𝑑𝑥
)︂ 1

𝑝

}︃ 1
1+𝜃

.

Proof.
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i) Inequality (6.4) is obvious since

𝐶𝑔 =

∫︁
(𝑎,𝑏)∩{𝑥:𝑓(𝑥)>0}

|𝑔(𝑥)|𝑝𝑑𝑥 =

∫︁
(𝑎,𝑏)∩{𝑥:𝑓(𝑥)>0}

|𝑓 ′′(𝑥)|𝑝(𝑓(𝑥))𝜃𝑝𝑑𝑥,

while (6.2) and (6.3) follow from Theorem 5.1. The fact that 𝑓 𝜃+1 ∈ 𝑊 1,𝑝((𝑎, 𝑏))
follows from Theorem 4.1.

ii) As we have 𝐹 = 𝑓 1+𝜃 ∈ 𝑊 1,𝑝(𝑎, 𝑏), it su�ces to apply the Morrey�Sobolev inequality
([17, Theorem 1.4.5, part (f)]):

|𝐹 (𝑥) − 𝐹 (𝑦)|
|𝑥− 𝑦|1−

1
𝑝

≤ 1

|𝑥− 𝑦|1−
1
𝑝

∫︁ 𝑦

𝑥

|𝐹 ′
(𝑥)|𝑑𝑥 ≤ |𝑥− 𝑦|1−

1
𝑝

|𝑥− 𝑦|1−
1
𝑝

(︂∫︁ 𝑦

𝑥

|𝐹 ′
(𝑥)|𝑝𝑑𝑥

)︂ 1
𝑝

,

where 𝑥, 𝑦 ∈ (𝑎, 𝑏), 𝑥 < 𝑦.

iii) We leave this part to the reader as an easy exercise.

�

Remark 6.1. The following example shows that one can �nd function 𝑓 obeying as-
sumptions in Theorem 6.1 and 𝑓 1+𝜃 ∈ 𝑊 1,𝑝((𝑎, 𝑏)) but 𝑓 1+𝜃 ̸∈ 𝑊 2,𝑝((𝑎, 𝑏)). Indeed, con-
sider the same function as in Example 6.1, namely let (𝑎, 𝑏) = (−1, 1), 𝑓𝛼(𝑥) = 𝑥𝛼𝜒𝑥>0,
where parameter 𝛼 > 0 will be estabilished later. By the same veri�cation we have
𝑓

′′
𝛼(𝑥) = 𝑔𝛼,𝜃(𝑥)(𝑓𝛼)𝜃 where 𝑔𝛼,𝜃(𝑥) = 𝛼(𝛼− 1)𝑥𝛼−2−𝛼𝜃𝜒𝑥>0. We note that:

𝑔𝛼,𝜃 ∈ 𝐿𝑝((−1, 1)) ⇐⇒ 𝜃 < −1 +
1

𝛼
(2 − 1

𝑝
) = 𝜅𝑝(𝛼);

(𝑓𝛼)1+𝜃 ∈ 𝑊 1,𝑝((−1, 1)) ⇐⇒ 𝜃 > −1 +
1

𝛼
(1 − 1

𝑝
) = 𝛽𝑝(𝛼);

(𝑓𝛼)1+𝜃 ∈ 𝑊 2,𝑝((−1, 1)) ⇐⇒ 𝜃 > −1 +
1

𝛼
(2 − 1

𝑝
) = 𝜅𝑝(𝛼);

and 𝛽𝑝(𝛼) < 𝜅𝑝(𝛼). Choosing 𝛼 ∈
(︁

𝑝−1
𝑝(𝜃+1)

, 2−𝑝
𝑝(𝜃+1)

)︁
we have 𝑓𝛼 ∈ 𝑊 2,1

𝑙𝑜𝑐 ((−1, 1)) and

𝑓 1+𝜃
𝛼 ∈ 𝑊 1,𝑝((−1, 1)) but 𝑓 1+𝜃

𝛼 cannot belong to 𝑊 2,𝑝((−1, 1)). In that sense regularity
result 𝑓 1+𝜃

𝛼 ∈ 𝑊 1,𝑝((−1, 1)) cannot be improved to 𝑓 1+𝜃
𝛼 ∈ 𝑊 2,𝑝((−1, 1)) .

This also shows that in general the statement:
𝑓𝛼 ∈ 𝐿2,𝑝,𝜃(𝐼𝑓 ) ∩ 𝐶≥0([−1, 1]) ⇐⇒ 𝑓 1+𝜃

𝛼 ∈ 𝑊 2,𝑝((−1, 1)) ∩ 𝐶≥0([−1, 1])
is false, while the statement:
𝑓𝛼 ∈ 𝐿1,𝑝,𝜃(𝐼𝑓 ) ∩ 𝐶≥0([−1, 1]) ⇐⇒ 𝑓 1+𝜃

𝛼 ∈ 𝑊 1,𝑝((−1, 1)) ∩ 𝐶≥0([−1, 1])
is true (see Remark 4.3).
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7 Additional remarks

The following remarks are in order.

Remark 7.1. When 𝜃 > −1 conditions 𝑐1) and 𝑐2) hold if we assume that 𝑓 is non-
negative and satis�es Dirichlet boundary condition: 𝑓(𝑎) = 𝑓(𝑏) = 0. When 𝜃 < −1
𝑑1), 𝑑2) hold provided that lim𝑥→𝑎 𝑓(𝑥) = lim𝑥→𝑏 𝑓(𝑥) = ∞.

Remark 7.2. Theorem 6.1 can be compared with the following statement obtained in
[11, Proposition 7.2], dealing with slightly di�erent boundary conditions and essentially
stronger assumptions: 𝑓 is strictly positive, 𝑓 ∈ 𝑊 2,1

𝑙𝑜𝑐 ((𝑎, 𝑏)) (in this case 𝑎 = 0).

Proposition 7.1. Suppose that 1 ≤ 𝑞 < ∞, 𝛼 ̸= −1 + 1
𝑞
, 𝜅 = −sign(𝛼 + 1 − 1

𝑞
),

0 < 𝑏 ≤ ∞, 𝑔 ∈ 𝐿𝑞((0, 𝑏)) and let 𝑓 ∈ 𝑊 2,1
𝑙𝑜𝑐 ((0, 𝑏)) be a positive solution of the following

ODE:⎧⎨⎩ 𝑓 ′′(𝑥) = 𝑔(𝑥)(𝑓(𝑥))𝛼 a.e. on (0, 𝑏)

lim inf
𝑅↗𝑏

𝜅|𝑓 ′(𝑅)|2𝑞−2𝑓 ′(𝑅)(𝑓(𝑅))−𝑞(𝛼+1)+1 − lim sup
𝑟↘0

𝜅|𝑓 ′(𝑟)|2𝑞−2𝑓 ′(𝑟)(𝑓(𝑟))−𝑞(𝛼+1)+1 ≤ 0.

Then we have

i) |𝑓 ′|2𝑞|𝑓 |−𝑞(𝛼+1) ∈ 𝐿1(0, 𝑏) and∫︁ 𝑏

0

|𝑓 ′(𝑥)|2𝑞|𝑓(𝑥)|−𝑞(𝛼+1)𝑑𝑥 ≤
(︂

(2𝑞 − 1)

|𝑞 − 1 + 𝛼𝑞|

)︂𝑞 ∫︁ 𝑏

0

|𝑔(𝑥)|𝑞𝑑𝑥,

ii)

sup

{︃
|(𝑓(𝑥))

1−𝛼
2 − (𝑓(𝑦))

1−𝛼
2 |

|𝑥− 𝑦|1−
1
2𝑞

: 𝑥, 𝑦 ∈ (0, 𝑏)

}︃
≤ 𝐴𝑞

(︂∫︁ 𝑏

0

|𝑔(𝑥)|𝑞𝑑𝑥
)︂ 1

2𝑞

,

𝐴𝑞 =
√︀

2𝑞 − 1|𝑞 − 1 + 𝛼𝑞|−
1
2
|1 − 𝛼|

2
,

iii) If 𝛼 < 1 then lim𝑟↘0 𝑓(𝑟) =: 𝑓(0) exists and the following estimate holds:

|𝑓(𝑥)| ≤

{︃
(𝑓(0))

1−𝛼
2 + 𝐴𝑞|𝑥|1−

1
2𝑞

(︂∫︁ 𝑏

0

|𝑔(𝑥)|𝑞𝑑𝑥
)︂ 1

2𝑞

}︃ 2
1−𝛼

.

Remark 7.3. In the original statement of assertion iii) in [11, Proposition 7.2] there is
an estimate:

|𝑓(𝑥)| ≤

{︃
(𝑓(0))

1−𝛼
2 + 𝐴𝑞|𝑥|1−

1
2𝑞

(︂∫︁ 𝑏

0

|𝑔(𝑥)|𝑞𝑑𝑥
)︂ 1

𝑞

}︃ 2
1−𝛼

,
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involving
(︁∫︀ 𝑏

0
|𝑔(𝑥)|𝑞𝑑𝑥

)︁ 1
𝑞
instead of

(︁∫︀ 𝑏

0
|𝑔(𝑥)|𝑞𝑑𝑥

)︁ 1
2𝑞
. This is a typo as iii) follows

trivially from ii).

Remark 7.4. In the paper by Adamowicz and the �rst author [1], the authors consider
the monotonicity properties of radial solutions to PDE having general form:

−𝑎(|𝑥|)∆𝑞(𝑤) + ℎ(|𝑥|, 𝑤,∇𝑤 · 𝑥
|𝑥|

) = 𝜑(𝑤),

where ∆𝑞(𝑤) = −div (|∇𝑤|𝑞−2∇𝑤) is the 𝑞-Laplacian and the equation is de�ned on a
ball in R𝑛. The particular cases that interest us are of the form:

− 𝑎(|𝑥|)𝑤′′
= 𝑤−𝜃, equivalently 𝑤

′′
= − 1

𝑎(|𝑥|)
𝑤−𝜃 =: −𝑔(𝑥)𝑤−𝜃, (7.1)

The adaptation of results from [1, Section 5], allows to deduce that (under some special
assumptions) the nonnegative solutions to (7.1) are often monotonic and as a conse-
quence we can in such cases simplify the assumptions 𝑐2), 𝑑2) in Theorem 6.1.

The following statement is obtained by an adaptation of methods from [1].

Theorem 7.1. Assume that 𝑓 : [0, 𝑅] → [0,∞) is the solution to (1.1) and additionally:

1) 𝑔 ∈ 𝑊 1,1
𝑙𝑜𝑐 ((0, 𝑅)) ∩ 𝐶([0, 𝑅)), 𝑔 > 0 in [0, 𝑅) and 𝑔 is nondecreasing;

2) 𝑓 ∈ 𝑊 2,1
𝑙𝑜𝑐 ((0, 𝑅)) ∩ 𝐶1([0, 𝑟)) for any 0 < 𝑟 < 𝑅 and 𝑓 ′(0) ≤ 0;

3) −1
𝑝
< 𝜃 < 1.

Then 𝑓 is nonincreasing in a neighborhood of 𝑅. In particular when 𝑓 ′(0) = 0 then
condition 𝑐2):

lim inf
𝑟↗𝑅

𝒜𝑓(𝑟) − lim sup
𝑟↘0

𝒜𝑓(𝑟) ≤ 0

in Theorem 6.1 is satisfied for 𝑓 , where 𝒜𝑓(𝑥) := 1
𝜃𝑝+1

Φ𝑝(𝑓
′(𝑥))(𝑓(𝑥))𝜃𝑝+1𝜒{𝑓>0}.

Moreover, if 𝑓(𝑥0) = 0 for some 𝑥0 ∈ [0, 𝑅) then 𝑓(𝑥) ≡ 0 for every 𝑥 ≥ 𝑥0.

Proof. Assume at �rst that 𝑓 ′(0) = 0.

We have
(︀
1
2
(𝑓 ′)2

)︀′
= − 1

1−𝜃

(︀
𝑓 1−𝜃

)︀′
𝑔(𝑥) and the function Ψ(𝑠) = 1

1−𝜃
𝑠1−𝜃 is increasing.

We consider the following three cases.

Case 1. 𝑓 is strictly positive on some interval (𝑥,𝑅) where 0 ≤ 𝑥 < 𝑅.
Let 𝑥0 := inf{𝑥 : 𝑓(𝑥) > 0 on (𝑥,𝑅)}. Then we have either 𝑥0 = 0 or 𝑓(𝑥0) = 0
for a 𝑥0 ∈ (0, 𝑅). In both cases 𝑥0 is a stationary point for 𝑓 . We have two situ-
ations: a) there are no other stationary points in (𝑥0, 𝑅) and b) set {𝑥 ∈ (𝑥0, 𝑅) :
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𝑥 is a stationary point for f} is not empty. In case a) it su�ces to check that Ψ(𝑓(𝑥0))−
Ψ(𝑓(𝑅)) ≥ 0. We have for any 0 < 𝜀 < 𝑅− 𝑥0:

Ψ(𝑓(𝑥0))−Ψ(𝑓(𝑅− 𝜀)) =

∫︁ 𝑥0

𝑅−𝜀

𝑓(𝑥)−𝜃𝑓 ′(𝑥)𝑑𝑥 =

∫︁ 𝑅−𝜀

𝑥0

1

𝑔(𝑥)
𝑓 ′′(𝑥)𝑓 ′(𝑥)𝑑𝑥

=

∫︁ 𝑅−𝜀

𝑥0

1

𝑔(𝑥)

(︂
1

2
(𝑓 ′(𝑥))2

)︂′

=
1

𝑔(𝑥)

1

2
(𝑓 ′(𝑥))2|𝑅−𝜀

𝑥0

−
∫︁ 𝑅−𝜀

𝑥0

(︂
1

𝑔(𝑥)

)︂′
1

2
(𝑓 ′(𝑥))2𝑑𝑥 ≥ 0

(7.2)

and we can let 𝜀 converge to zero. In case b) we consider any 𝑥0 < 𝑦1 < 𝑦2 ≤ 𝑅 and we
will show that 𝑓(𝑦1) ≥ 𝑓(𝑦2). If 𝑦1 is a stationary point for 𝑓 this follows by the same
computations as in (7.2) with (𝑥0, 𝑅) substituted by (𝑦1, 𝑦2). If it is not the case, let
𝑦1 < 𝑦1 be the nearest to 𝑦1 stationary point in [𝑥0, 𝑦1). Modi�cation of (7.2) shows that
then 𝑓 is decreasing on (𝑦1, 𝑦1), so it is also decreasing in a neighborhood of 𝑦1. If there
are no stationary points in (𝑦1, 𝑦2), we deduce that 𝑓(𝑦1) > 𝑓(𝑦2). If it is not the case, let
𝑦2 ∈ (𝑦1, 𝑦2) be the nearest stationary point to 𝑦1, then 𝑓(𝑦1) > 𝑓(𝑦2). By modi�cation
of (7.2) with (𝑥0, 𝑅) substituted by (𝑦2, 𝑦2) we deduce that then 𝑓(𝑦2) ≥ 𝑓(𝑦2). In all
situations we have 𝑓(𝑦1) ≥ 𝑓(𝑦2).

Case 2. 𝑓 is zero in a neighborhood of 𝑅.
In this case the assertion holds trivially.

Case 3. There exists a sequence of zeroes of 𝑓 converging to 𝑅 and 𝑓 is not identically
zero in every neighborhood of 𝑅.
This situation is impossible. Indeed, if it would hold, in arbitrary small neighborhood
of 𝑅, we could �nd 0 < 𝑥1 < 𝑥2 ≤ 𝑅 such that 𝑓(𝑥1) = 0, 𝑓(𝑥2) > 0 and 𝑓 > 0 on
(𝑥1, 𝑥2). The computations in (7.2) with (𝑥0, 𝑅) substituted by (𝑥1, 𝑥2) show that then
0 = 𝑓(𝑥1) ≥ 𝑓(𝑥2) > 0, a contradiction.

When 𝑓 ′(0) < 0 then either 𝑓 has no stationary point in (0, 𝑅) and then the assertion
is true or there exists a stationary point �̄� ∈ (0, 𝑅). In the last situation it su�ces to
apply previous arguments with 0 substituted by �̄�. This completes the proof. �

Remark 7.5. Taliaferro in [23] studied the asymptotic behavior of positive classical
solutions to equation:{︂

𝑓 ′′(𝑥) + 𝑔(𝑥)𝑓−𝜃(𝑥) = 0, where 𝑥 ∈ (0, 1),
𝑓(0) = 𝑓(1) = 0

(7.3)

where 𝜃 > 0, 𝑔 is positive and continuous in (0, 1). It is proven there (see Theorems 3

and 5) that (7.3) has positive classical solutions if and only if
∫︀ 1

0
𝑡(1 − 𝑡)𝑔(𝑡)𝑑𝑡 < ∞.

Assuming this condition the author showed that
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i) if
∫︀ 1/2

0
𝑔(𝑡)𝑡−𝜃𝑑𝑡 <∞ then there exists positive constant 𝑎 such that

𝑓(𝑡) ∼ 𝑎𝑡− 𝑎𝜃(1 + 𝑜(1))

∫︁ 𝑡

0

(𝑡− 𝑠)𝑔(𝑠)𝑠−𝜃𝑑𝑠,

as 𝑡→ 0;

ii) if
∫︀ 1/2

0
𝑔(𝑡)𝑡−𝜃𝑑𝑡 = ∞ and ℎ(𝑡) :=

(︁∫︀ 1/2

𝑡
𝜓(𝑠)𝑠−𝜃𝑑𝑠

)︁ 1
𝜃+1

where 𝜓 > 0, 𝜓 ∼ 𝑔 as 𝑡→ 0,

𝜓 ∈ 𝐶([0, 1/2]) ∩ 𝐶1((0, 1/2)) and lim𝑡→0
𝑡ℎ

′′
(𝑡)

ℎ′ (𝑡)
=: 𝑅 > −2 then

𝑓(𝑡) ∼
(︂
𝜃 + 1

2 +𝑅

)︂ 1
1+𝜃

𝑡ℎ(𝑡),

as 𝑡→ 0.

Conditions on 𝑔 in i) and ii) involve weighted 𝐿1 spaces 𝐿1((0, 1), 𝑡(1 − 𝑡)𝑑𝑡) and
𝐿1((0, 1/2), 𝑡−𝜃𝑑𝑡), while we assume that 𝑔 belongs the unweighted 𝐿𝑝 space on the
domain of solutions to the ODE. Therefore Taliaferro's results cannot be directly com-
pared with ours.
On the other hand, when 𝜃 > −1 and 𝑓 solves (7.3), we deduce from our Theorem 6.1,
statement iii) and Remark 7.1 that solutions satisfy the estimate:

0 ≤ 𝑓(𝑥) ≤ 𝐶𝑥
𝑝−1

𝑝(1+𝜃)

(︂∫︁ 1

0

|𝑔(𝑥)|𝑝𝑑𝑥
)︂ 1

𝑝(1+𝜃)

.

In particular when −1 < 𝜃 < −1
𝑝
we have 𝑝−1

𝑝(1+𝜃)
> 1 and our estimate allows to conclude

that solutions converge to zero as 𝑥→ 0 faster than linearly.
It would be interesting to provide analysis on in�nite intervals as well and describe the
asymptotic behavior of solutions near in�nity.

Remark 7.6. Several nonexistence results which can be adapted to general equations
like (1.1) can be found in papers [1, 12]. To the best of our knowledge, the existence
results of Emden�Fowler equation (1.1) outside continuity assumptions on function 𝑔
are missing in the literature.
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